

Implementation of clay rock and bentonite models using Mfront Eric Simo, T. Helfer, P. Herold, M. Mánica, D. Masin, T. Nagel

Implementation of clay rock and bentonite models using Mfront | Eric Simo, Miguel Mánica

Clay rock as potential host rock for high-level waste repositories

- Clay rock formations are considered to be a suitable host rock for the disposal of high-level waste (HLW)
- In Germany nine formations have been selected for further investigations
- The **safety** of a repository in a clay has to be proven for a period of **1 Million years**
- The understanding of the complex THMbehaviour of clay materials is therefore necessary for the safety assessment of repository

BGE TECHNOLOGY GmbF

Bentonite as sealing material in radioactive waste repository

- Bentonite materials are considered as the main sealing element of the engineered barrier system for a HLW-repository in clay formations
- Advantages of Bentonite:
 - Very low Permeability: $10^{-17} 10^{-18} \text{ m}^2$
 - Swelling capacity
 - Sorption capacity
- A suitable model for bentonite taking into account all relevant phenomena expected in the nearfield of the disposed cask is necessary for numerical based safety assessment

Hypoplastic THM-model for bentonite Eric Simo

Material Behaviour of Bentonite

Fig. 1-4: Fabric of Wyoming granular bentonite: (a) appearance of granular bentonite at macroscopic scale; photomicrographs of the material at (b) the as compacted state, and (c) after wetting/drying cycles with significant modification of the fabric.

01.12.2020

Implementation of clay rock and bentonite models using Mfront | Eric Simo, Miguel Mánica

Total suction, ψ [MPa]

Description of the Bentonite Model

Expression of the model proposed by (Mašín, 2013 & 2017)

$$\mathbf{\mathring{\sigma}}^{M} = f_{s}[\mathcal{L}:(\mathbf{\check{\epsilon}} - f_{m}\mathbf{\check{\epsilon}}^{m}) + f_{d}\mathbf{N}\|\mathbf{\check{\epsilon}} - f_{m}\mathbf{\check{\epsilon}}^{m}\|] + f_{u}(\mathbf{H}_{s} + \mathbf{H}_{T})$$

- Behaviour of the macrostructure based on hypoplasticity and Bishop equation: $\sigma^M = \sigma^{net} \mathbf{1}S_r^M s$
- Behaviour of microstructure using elastic volumetric model and Terzaghi stress hypothesis:

$$\dot{\boldsymbol{\epsilon}}^m = \frac{1}{3} \left(\alpha_s \dot{T} - \frac{\kappa_m}{p^m} \dot{p}^m \right) \qquad \boldsymbol{\sigma}^m = \boldsymbol{\sigma}^{net} - \mathbf{1}s$$

- Double structure coupling through the factor f_m
- Hydraulic and thermal effect considered through $(H_s + H_T)$
- f_u controls the overconsolidation ratio, f_s and f_d control the effect of stress and void ratio on macrostructural soil stiffness

Description of the Bentonite Model

Some applications of the model

wetting-drying oedometric experiments on Boom clay

Mašín(2013)

Implementation of clay rock and bentonite models using Mfront | Eric Simo, Miguel Mánica

Conceptual approach

The available code of the bentonite model was included in Mfront as a C++Library

Testing of the implementation: at local level

Testing of the implementation: at global level

First results

Suction and axial stress were applied then saturation was calculated:

Figure 1: Comparison of the saturation computed with MTest and the saturation computed with TRIAX for the first test

Figure 2: Comparison of the saturation computed with MTest and the saturation computed with TRIAX for the second test

A nonlocal HM-model for clay rocks Miguel Mánica

Observed behaviour:

13

01.12.2020

- Observed behaviour:
 - Rate dependency

14

01.12.2020

Implementation of clay rock and bentonite models using Mfront | Eric Simo, Miguel Mánica

- Observed behaviour:
 - Rate dependency
 - Creep

- Observed behaviour:
 - Rate dependency
 - Creep
 - Significant softening

- Observed behaviour:
 - Rate dependency
 - Creep
 - Significant softening
 - Localised deformations

Opalinus clay (Naumann et al., 2007)

- Observed behaviour:
 - Rate dependency
 - Creep
 - Significant softening
 - Localised deformations
 - Anistropic properties:
 - > Stiffness

- Observed behaviour:
 - Rate dependency
 - Creep
 - Significant softening
 - Localised deformations
 - Anistropic properties:
 - > Stiffness
 - Strength

- Observed behaviour:
 - Rate dependency
 - Creep
 - Significant softening
 - Localised deformations
 - Anistropic properties:
 - > Stiffness
 - Strength
 - Permeability

Callovo-Oxfordian argillite (Zhang & Rothfuchs, 2004)

01.12.2020

- Observed behaviour:
 - Rate dependency
 - Creep
 - Significant softening
 - Localised deformations
 - Anistropic properties:
 - > Stiffness
 - ➤ Strength
 - > Permeability
 - Increase of permeability with damage

Callovo-Oxfordian argillite (Armand et al., 2014)

21

01.12.2020

- Nonlocal elasto-viscoplastic constitutive model (Manica, 2018).
- Incorporates the mentioned behavioural features for indurated clayey materials.
- Implemented in the FEM code Plaxis.

- Nonlocal elasto-viscoplastic constitutive model (Manica, 2018).
- Incorporates the mentioned behavioural features for indurated clayey materials.
- Implemented in the FEM code Plaxis.
- Is currently being implemented in OpenGeoSys trough MFront.

- Nonlocal elasto-viscoplastic constitutive model (Manica, 2018).
- Incorporates the mentioned behavioural features for indurated clayey materials.
- Implemented in the FEM code Plaxis.
- Is currently being implemented in OpenGeoSys trough MFront.

Scientific open-source initiative for the numerical simulation of thermo-hydro-mechanical/chemical (THMC) processes in porous and fractures media (Kolditz, 1990; Wollrath, 1990; Kroehn, 1991; Helmig, 1993; Kolditz et al., 2012; Bilke et al., 2019)

https://www.opengeosys.org/

24

01.12.2020

- Nonlocal elasto-viscoplastic constitutive model (Manica, 2018).
- Incorporates the mentioned behavioural features for indurated clayey materials.
- Implemented in the FEM code Plaxis.
- Is currently being implemented in OpenGeoSys trough MFront.

Scientific open-source initiative for the numerical simulation of thermo-hydro-mechanical/chemical (THMC) processes in porous and fractures media (Kolditz, 1990; Wollrath, 1990; Kroehn, 1991; Helmig, 1993; Kolditz et al., 2012; Bilke et al., 2019)

https://www.opengeosys.org/

No introduction required here ;) (Helfer et al., 2015)

http://tfel.sourceforge.net/

25

01.12.2020

Implementation of clay rock and bentonite models using Mfront | Eric Simo, Miguel Mánica

Description	Equation	Parameters
Strain decomposition	$d\boldsymbol{\epsilon} = d\boldsymbol{\epsilon}^{e} + d\boldsymbol{\epsilon}^{vp} + d\boldsymbol{\epsilon}^{c}$	_

Description	Equation						Parameters
Strain decomposition	$d\boldsymbol{\epsilon} = d\boldsymbol{\epsilon}^{e} + d$	$\boldsymbol{\epsilon}^{\mathrm{vp}} + \mathrm{d} \boldsymbol{\epsilon}^{\mathrm{c}}$					_
Elastic behaviour	$\mathrm{d}\boldsymbol{\sigma} = \hat{\mathbf{D}}^{\mathrm{e}}\mathrm{d}\boldsymbol{\epsilon}^{\mathrm{e}}$						$E_1, E_2, G_2, \nu_1, \nu_2, \alpha^{\rm rot},$
	$\hat{\mathbf{D}}^{\mathrm{e}} = \mathbf{T}^{\mathrm{T}} \mathbf{D}^{\mathrm{e}} \mathbf{T}$	Г					$eta^{ m rot}$
[$E_1 \frac{1 - \bar{n}\nu_2^2}{(1 + \nu_1)\bar{m}}$	$E_1 \frac{\nu_1 + \bar{n}\nu_2^2}{(1+\nu_1)\bar{m}}$	$E_1 \frac{\nu_2}{\bar{m}}$	0	0	0	
	$E_1 \frac{\nu_1 + \bar{n}\nu_2^2}{(1+\nu_1)\bar{m}}$	$E_1 \frac{1 - \bar{n}\nu_2^2}{(1 + \nu_1)\bar{m}}$	$E_1 \frac{\nu_2}{\bar{m}}$	0	0	0	
$\mathbf{D}^{\mathrm{e}} =$	$E_1 \frac{\nu_2}{\bar{m}}$	$E_1 \frac{\nu_2}{\bar{m}}$	$E_2 \frac{1 - \nu_1}{\bar{m}}$	0	0	0	
	0	0	0	$\frac{E_1}{2(1+\nu_1)}$	0	0	
	0 0	0 0	0 0	0 0	$G_2 \\ 0$	$\begin{bmatrix} 0\\ G_2 \end{bmatrix}$	

Description	Equation	Parameters
Strain decomposition	$d\boldsymbol{\epsilon} = d\boldsymbol{\epsilon}^{e} + d\boldsymbol{\epsilon}^{vp} + d\boldsymbol{\epsilon}^{c}$	-
Elastic behaviour	$\mathrm{d}oldsymbol{\sigma} = \hat{\mathbf{D}}^{\mathrm{e}} \mathrm{d}oldsymbol{\epsilon}^{\mathrm{e}}$	$E_1, E_2, G_2, \nu_1, \nu_2, \alpha^{\rm rot},$
	$\hat{\mathbf{D}}^{\mathrm{e}} = \mathbf{T}^{\mathrm{T}} \mathbf{D}^{\mathrm{e}} \mathbf{T}$	$eta^{ m rot}$
Yield criterion	$F = \sqrt{\frac{J_2}{f_{\rm d}(\theta)} + (c^* + p_t \tan \phi^*)^2} - (c^* + p' \tan \phi^*)$	$lpha_{ m d}$
	$f_{\rm d}(\theta) = \alpha_{\rm d} \left(1 + B_{\rm d} \sin 3\theta\right)^{n_{\rm d}}$ a) Mohr-Coulomb Mohr-Coulomb Employed	b) σ_1 σ_3
01.12.2020	Implementation of clay rock and bentonite models using Mfront Eric Simo, Miguel Mánica	28 BGE TECHNOLOGY GmbH

Description	Equation	Parameters
Strength anisotropy	$c^* = \Omega(\delta) c_0^*$	$\Omega_{90},\Omega_{ m m},\delta_{ m m},n$
	$p_t = \Omega(\delta) p_{t0}$	
	$\Omega = \frac{A e^{(\delta_{m} - \delta)n}}{\left[1 + e^{(\delta_{m} - \delta)n}\right]^{2}} + \frac{B}{1 + e^{(\delta_{m} - \delta)n}} + C$	
	$A = \frac{2(e_1+1)(e_2+1)(e_1-e_2+\Omega_{90}+e_1e_2+e_1\Omega_{90})}{(e_1-e_2)(e_1-e_2)}$	$\frac{10 - e_2 \Omega_{90} - 2e_1 \Omega_m + 2e_2 \Omega_m - e_1 e_2 \Omega_{90} - 1)}{-1)(e_2 - 1)}$
	$B = \frac{\frac{\Omega_{90} - \frac{Ae_1}{(e_1 + 1)^2} + \frac{Ae_2}{(e_2 + 1)^2} - 1}{\frac{1}{e_1 + 1} - \frac{1}{e_2 + 1}}$	1.4 1.3 1.2 1.1 1.1
	$C = 1 - \frac{Ae_2}{(e_2+1)^2} - \frac{B}{e_2+1}$	
	$e_1 = e^{n(\delta_m - 90)}$	
	$e_2 = e^{n\delta_m}$	$0.6 \begin{bmatrix} - & - & - & - & - & - & - & - & - & -$

01.12.2020

Implementation of clay rock and bentonite models using Mfront | Eric Simo, Miguel Mánica

Description	Equation	Parameters
Softening laws	$\tan \phi^* = \tan \phi^*_{\text{peak}} - \left(\tan \phi^*_{\text{peak}} - \tan \phi^*_{\text{res}} \right) \left[1 - e^{-b_{\text{res}}(\epsilon^{\text{p}}_{\text{eq}})} \right]$	$\phi^*_{\text{peak}}, \phi^*_{\text{res}}, c^*_{0 \text{peak}}, p_{t \text{peak}},$
	$c_0^* = \left(c_{0\mathrm{peak}}^* - c_{0\mathrm{post}}^*\right) \mathrm{e}^{-b_{\mathrm{post}}(\epsilon_{\mathrm{eq}}^{\mathrm{p}})} + c_{0\mathrm{post}}^* \mathrm{e}^{-b_{\mathrm{res}}(\epsilon_{\mathrm{eq}}^{\mathrm{p}})}$	$r_{\rm post},b_{ m post},b_{ m res}$
	$p_{t0} = (p_{t0 \text{ peak}} - p_{t0 \text{ post}}) e^{-b_{\text{post}}(\epsilon_{\text{eq}}^{\text{p}})} + p_{t0 \text{ post}} e^{-b_{\text{res}}(\epsilon_{\text{eq}}^{\text{p}})}$	
	$\epsilon_{ m eq}^{ m p} = \left(oldsymbol{\epsilon}^{ m p}:oldsymbol{\epsilon}^{ m p} ight)^{1/2}$ $ au$	τ 🛦
	$oldsymbol{\epsilon}^{\mathrm{p}} = oldsymbol{\epsilon}^{\mathrm{vp}} + oldsymbol{\epsilon}^{\mathrm{c}}$	Peak
	$r_{\text{post}} = \frac{c_{0 \text{ post}}^*}{c_{0 \text{ peak}}^*} = \frac{p_{t0 \text{ post}}}{p_{t0 \text{ peak}}}$	Fissure post-rupture Polishing / orientation ϕ'_{t} Residual
	Strain Displacement (Jardin	et al., 2004)
		BGE TEC
01.12.2020	Implementation of clay rock and bentonite models using Mfront Eric Simo, Miguel Mánica	30 BGE TECHNOLOGY GmbH

Description	Equation	Parameters
Softening laws	$\tan \phi^* = \tan \phi^*_{\text{peak}} - \left(\tan \phi^*_{\text{peak}} - \tan \phi^*_{\text{res}} \right) \left[1 - e^{-b_{\text{res}}(\epsilon^{\text{p}}_{\text{eq}})} \right]$	$\phi^*_{\text{peak}}, \phi^*_{\text{res}}, c^*_{0 \text{peak}}, p_{t \text{peak}},$
	$c_0^* = \left(c_{0\mathrm{peak}}^* - c_{0\mathrm{post}}^*\right) \mathrm{e}^{-b_{\mathrm{post}}(\epsilon_{\mathrm{eq}}^{\mathrm{p}})} + c_{0\mathrm{post}}^* \mathrm{e}^{-b_{\mathrm{res}}(\epsilon_{\mathrm{eq}}^{\mathrm{p}})}$	$r_{ m post},b_{ m post},b_{ m res}$
	$p_{t0} = (p_{t0 \text{ peak}} - p_{t0 \text{ post}}) e^{-b_{\text{post}}(\epsilon_{\text{eq}}^{\text{p}})} + p_{t0 \text{ post}} e^{-b_{\text{res}}(\epsilon_{\text{eq}}^{\text{p}})}$	
	$\epsilon_{ m eq}^{ m p} = \left(oldsymbol{\epsilon}^{ m p}:oldsymbol{\epsilon}^{ m p} ight)^{1/2}$	
	$oldsymbol{\epsilon}^{\mathrm{p}} = oldsymbol{\epsilon}^{\mathrm{vp}} + oldsymbol{\epsilon}^{\mathrm{c}}$	
	$r_{\text{post}} = \frac{c_{0 \text{ post}}^*}{c_{0 \text{ peak}}^*} = \frac{p_{t0 \text{ post}}}{p_{t0 \text{ peak}}}$	
Plastic potential	$\frac{\partial G}{\partial \boldsymbol{\sigma}'} = \omega \frac{\partial F}{\partial p} \frac{\partial p}{\partial \boldsymbol{\sigma}'} + \frac{\partial F}{\partial J_2} \frac{\partial J_2}{\partial \boldsymbol{\sigma}'} + \frac{\partial F}{\partial \theta} \frac{\partial \theta}{\partial \boldsymbol{\sigma}'}$	ω

Description	Equation	Parameters
Softening laws	$\tan \phi^* = \tan \phi^*_{\text{peak}} - \left(\tan \phi^*_{\text{peak}} - \tan \phi^*_{\text{res}} \right) \left[1 - e^{-b_{\text{res}}(\epsilon^{\text{p}}_{\text{eq}})} \right]$	$\phi^*_{\mathrm{peak}}, \phi^*_{\mathrm{res}}, c^*_{0\mathrm{peak}}, p_{t\mathrm{peak}},$
	$c_0^* = \left(c_{0\mathrm{peak}}^* - c_{0\mathrm{post}}^*\right) \mathrm{e}^{-b_{\mathrm{post}}(\epsilon_{\mathrm{eq}}^{\mathrm{p}})} + c_{0\mathrm{post}}^* \mathrm{e}^{-b_{\mathrm{res}}(\epsilon_{\mathrm{eq}}^{\mathrm{p}})}$	$r_{ m post},b_{ m post},b_{ m res}$
	$p_{t0} = (p_{t0 \text{ peak}} - p_{t0 \text{ post}}) e^{-b_{\text{post}}(\epsilon_{\text{eq}}^{\text{p}})} + p_{t0 \text{ post}} e^{-b_{\text{res}}(\epsilon_{\text{eq}}^{\text{p}})}$	
	$\epsilon^{\mathrm{p}}_{\mathrm{eq}} = \left(oldsymbol{\epsilon}^{\mathrm{p}}:oldsymbol{\epsilon}^{\mathrm{p}} ight)^{1/2}$	
	$oldsymbol{\epsilon}^{\mathrm{p}} = oldsymbol{\epsilon}^{\mathrm{vp}} + oldsymbol{\epsilon}^{\mathrm{c}}$	
	$r_{\text{post}} = \frac{c_{0 \text{ post}}^*}{c_{0 \text{ peak}}^*} = \frac{p_{t0 \text{ post}}}{p_{t0 \text{ peak}}}$	
Plastic potential	$\frac{\partial G}{\partial \boldsymbol{\sigma}'} = \omega \frac{\partial F}{\partial p} \frac{\partial p}{\partial \boldsymbol{\sigma}'} + \frac{\partial F}{\partial J_2} \frac{\partial J_2}{\partial \boldsymbol{\sigma}'} + \frac{\partial F}{\partial \theta} \frac{\partial \theta}{\partial \boldsymbol{\sigma}'}$	ω
Visco-plasticity	$\mathrm{d}\boldsymbol{\epsilon}^{\mathrm{vp}} = \frac{\langle \Phi(F) \rangle}{\eta} \frac{\partial G}{\partial \boldsymbol{\sigma}'} \mathrm{d}t$	N,η
	$\Phi(F) = \left(\frac{F}{p_{\rm atm}}\right)^N$	

Implementation of clay rock and bentonite models using Mfront | Eric Simo, Miguel Mánica

32

BGE TEC

Description	Equation	Parameters
Creep deformations	$\begin{aligned} \mathbf{d}\boldsymbol{\epsilon}^{\mathrm{c}} &= \dot{\boldsymbol{\epsilon}}^{\mathrm{c}} \mathrm{d}t \\ \dot{\boldsymbol{\epsilon}}^{\mathrm{c}} &= \begin{cases} 0 & \text{if } \boldsymbol{\epsilon}_{\mathrm{eq}}^{\mathrm{p}} \leq \boldsymbol{\epsilon}_{\mathrm{thr}} \\ \gamma \mathrm{e}^{(-m\boldsymbol{\epsilon}_{\mathrm{eq}}^{\mathrm{c}})} \left(\mathbf{s} + \mu p' \mathbf{I}\right) & \text{if } \boldsymbol{\epsilon}_{\mathrm{eq}}^{\mathrm{p}} > \boldsymbol{\epsilon}_{\mathrm{thr}} \end{cases} \\ \boldsymbol{\epsilon}_{\mathrm{eq}}^{\mathrm{c}} &= \left(\boldsymbol{\epsilon}^{\mathrm{c}} : \boldsymbol{\epsilon}^{\mathrm{c}}\right)^{1/2} \end{aligned}$	$\gamma,\mu,m,\epsilon_{ m thr}$

Description	Equation		Parameters
Creep deformations	$\mathrm{d}\boldsymbol{\epsilon}^{\mathrm{c}} = \dot{\boldsymbol{\epsilon}}^{\mathrm{c}} \mathrm{d}t$		$\gamma,\mu,m,\epsilon_{ m thr}$
	$\dot{\boldsymbol{\epsilon}}^{\mathrm{c}} = \begin{cases} 0 & \text{if} \\ \gamma \mathrm{e}^{(-m\epsilon_{\mathrm{eq}}^{\mathrm{c}})} \left(\mathbf{s} + \mu p' \mathbf{I} \right) & \text{if} \end{cases}$	$\epsilon_{ m eq}^{ m p} \leq \epsilon_{ m thr}$ $\epsilon_{ m eq}^{ m p} > \epsilon_{ m thr}$	
	$\epsilon_{ m eq}^{ m c} = \left({oldsymbol \epsilon}^{ m c} : {oldsymbol \epsilon}^{ m c} ight)^{1/2}$		
Nonlocal regularisation	$ar{\epsilon}_{ ext{eq}}^{ ext{p}}(\mathbf{x}) = \int_{V} w\left(\mathbf{x}, \boldsymbol{\xi} ight) \epsilon_{ ext{eq}}^{ ext{p}}\left(\boldsymbol{\xi} ight) d\boldsymbol{\xi}$		l_{s}
	$w\left(\mathbf{x}, \boldsymbol{\xi}\right) = \frac{w_{0}(\ \mathbf{x}-\boldsymbol{\xi}\)}{\int_{V} w_{0}(\ \mathbf{x}-\boldsymbol{\zeta}\) d\boldsymbol{\zeta}}$ $w_{0} = \frac{\ \mathbf{x}-\boldsymbol{\xi}\ }{l_{s}} e^{-\left(\frac{\ \mathbf{x}-\boldsymbol{\xi}\ }{l_{s}}\right)^{2}}$	B01 (343 elements) B02 (789 elements)	hts) B03 (1303 elements)

Implementation of clay rock and bentonite models using Mfront | Eric Simo, Miguel Mánica

Description	Equation	Parameters
Hydro-mechanical	$\boldsymbol{\sigma}' = \boldsymbol{\sigma} + S_{\mathrm{e}} s B \mathbf{I}$	$B,\lambda,P,eta,k_{ m h},k_{ m v}$
coupling	$S_{\rm e} = \frac{S_{\rm l} - S_{\rm lr}}{S_{\rm ls} - S_{\rm lr}} = \left[1 + \left(\frac{s}{P}\right)^{\frac{1}{1-\lambda}}\right]^{-\lambda}$	
	$\mathbf{q} = -rac{\mathbf{k}k_{\mathrm{r}}}{\mu_{\mathrm{w}}}(abla p_{\mathrm{l}} - ho_{\mathrm{w}}\mathbf{g})$	
	$k_{\rm r} = S_{\rm e}^{\frac{1}{2}} \left[1 - \left(1 - S_{\rm e}^{\frac{1}{\lambda}} \right)^{\lambda} \right]^2$	
	$\mathbf{k} = \mathbf{k}_0 \left[1 + eta \left(\epsilon_{ m eq}^{ m p} ight)^3 ight]$	

Application example

 Simulation of drifts at the Meuse/Haute Marne Underground Research Laboratory.

(Seyedi et al., 2017)

Details in: Mánica M (2018) Analysis of underground excavations in argillaceous hard soils—weak rocks. Technical University of Catalonia, PhD.

01.12.2020

Implementation of clay rock and bentonite models using Mfront | Eric Simo, Miguel Mánica

37 BGE TECHNOLOGY GmbH

Application example

Obtained results – localized water flow

 Implementation of the described model in OpenGeoSys: recently started project.

- Implementation of the described model in OpenGeoSys: recently started project.
- Support for MFront already provided in OpenGeoSys (Nagel et al., 2019) trough the MFrontGenericInterfaceSupport (MGIS) library (Helfer et al., 2020).

- Implementation of the described model in OpenGeoSys: recently started project.
- Support for MFront already provided in OpenGeoSys (Nagel et al., 2019) trough the MFrontGenericInterfaceSupport (MGIS) library (Helfer et al., 2020).

• Local version of the model straightforward.

- Implementation of the described model in OpenGeoSys: recently started project.
- Support for MFront already provided in OpenGeoSys (Nagel et al., 2019) trough the MFrontGenericInterfaceSupport (MGIS) library (Helfer et al., 2020).
- Local version of the model straightforward.
- Nonlocal version more challenging:
 - Already exists a native implementation in **OGS** (Parisio et al., 2019).
 - Main requirement access to state variables from neighboring Gauss points.
 - It could be directly addressed in **MFront**.

Next steps

- Bentonite model:
 - Development work in OpenGeoSys to considered the generalized state variable vector for THM-simulation
 - Numerical tests and Benchmarks in OpenGeoSys and SIFEL
- Clay stone model
 - Implementation of the local model in Mfront
 - Theoretical work to deal with nonlocal plasticity in Mfront

Thank you for your attention!