

Application of Ubiquitous-Joint Model for Modelling Fractures in Crystalline Rock Formations: Preliminary Studies

Ajmal Gafoor, Christian Müller, Philipp Herold

PRECODE AP6 | BGE TEC

Motivation

- Project PRECODE Various numerical modelling approaches
 - Integrity Analyses (Quantification of Dilatancy und Fluid pressure)
- Small-scale and Benchmark calculations
 - To verify influence of fractures on crystalline rock mechanical deformation behaviour
- Fracture-Continuum approach Unique material behaviours (Fracture+Matrix) in numerical models

Typical Strength Anisotropy Curves of Crystalline-type Rocks

- → Aim: Qualitative reproduction of strength anisotropy curves for shown fracture discontinuities
- → Typical strength anisotropy curves for samples with single, one set and two discontinuities
- → Observations according to Hoek-Brown (1980) (Al-Harthi, 1998)

Small-scale Model – Plate-like Model, Parameters

Model with two orthogonal fractures

Materialparameter	Fracture	Matrix
Elastic parameters		<i>E</i> = 10 GPa v = 0.20
Friction	35°	45°
Dilation	20°	30°
Cohesion (MPa)	0.2	3
Tension (MPa)	0.2	3

- Axial loading
- Mohr-Coloumb Model : Matrix
- Ubiquitous-Joint Model : Fracture
- Model size: 100 x 5 x 200 [m]
- Zone size: 20 x 1 x 40
- Fracture orientation : $0^{\circ} \le \beta \le 90^{\circ}$

Failure/Dilatancy Envelopes in Mohr-Circle-Diagram -> Joints

Fracture-Continuum: Two Orthogonal Fractures (Case III)

ΓΕС

BGE TECHNOLOGY GmbH

Benchmark – Tunnel

- Generalised model of size 50 m x 10 m x 100 m
- Fractures of three different orientations
- Mechanical deformation processes

Material parameters	Fracture	Matrix
<i>E</i> (GPa) v	7.85 0.27	73 0.27
Friction	35°	49°
Dilation	20°	10°
Cohesion (MPa)	0	31
Tension (MPa)	0	14.8

Benchmark – Tunnel under different lateral initial stresses

Conclusions & Outlook

- Evaluation of the dilatancy criterion in a fractured crystalline host rock
 - Small-scale Model with single/multi fractures
 - Benchmark Case I Medium-scale model with a tunnel
- To demonstrate the dilatant strength/the fluid pressure criteria of geological barrier
 - Benchmark Case II Medium-scale model with a borehole
 - Benchmark Case III Large-scale model with a repository

