CHRISTA II

Bewertung zur Integrität der geologischen Barriere im Kristallin

Jan Thiedau, Carlos Guevara, Jobst Maßmann, Sarah Weihmann

15.06.2021

CHRISTA II: Aufgabenstellung

Konzeption und beispielhafte Durchführung von Integritätsanalysen für die geologische Barriere

3 Endlagersysteme:

Multiple ewG im Kristallingestein

Überlagernder ewG im Tongestein

Überlagernder ewG im Salzgestein

Task 4.1

• Ableitung quantitativer Integritätskriterien

Task 4.2 / Task 4.3

- Konzeption und Modellbildung zum Nachweis der Integrität der geologischen Barriere im Kristallin
- Exemplarischer Integritätsnachweis ("multipler ewG" und "überlagernder ewG")
 - o Überlagerungseffekte einzelner ewG-Komponenten
 - Auswirkung des Abstands zwischen Wirts- und Barrieregestein

Sicherheitsgerichtete Bewertung der Integrität des ewG

Ableitung quantitativer Integritätskriterien

Entwurfsstatus

Temperatur-Kriterium

- BMU 2020: Keine erhebliche Beeinträchtigung der Barrierewirkung durch Temperatureinwirkung
- Literaturanalyse: 150 °C für HMC-Prozesse unproblematisch, biologisch vorteilhaft
- Zunächst orientiert an StandAG, §27 Absatz 4
- Behälteroberfläche unter 100 °C

Fluiddruck-Kriterium

- BMU 2020: Keine Fluiddrücke, die zur Zunahme von Fluidwegsamkeiten führen
- HM-Kopplung wesentlich, Fluiddrücke implizit in effektiven Spannungen erhalten
- Totale Gebirgsspannungen stets größer als Porendruck

Dilatanz-Kriterium

- BMU 2020: a)Keine Ausbildung von Fluidwegsamkeiten, b) Dilatanzfestigkeit nicht überschreiten
- a) Keine Entstehung, Fortpflanzung, Öffnung von Rissen,
- b) dilatantes Verhalten geht diesem stets voraus und erscheint abdeckend
- Vorschädigung / Klüftung muss ggf. berücksichtigt werden
- Hoek-Brown als Kriterium auf effektive Spannungen anwenden, Einbeziehung GSI-Index zur Vorschädigung

"Chemie-Kriterium"

- BMU 2020: Keine erhebliche Beeinträchtigung der Barrierewirkung durch geänderte chemischen Verhältnisse
- Vorschlag für einen Bewertungsmaßstab soll im Vorhaben noch erarbeitet werden

Integritätsanalysen zum überlagernden ewG

- Analyse der Integrität des überlagernden ewGs
- THM-Analysen in Salz- und Tongestein
- Konzepte aus den Vorhaben KOSINA bzw. ANSICHT
- Numerische 2D-Untersuchungen für das Vorhaben RESUS
- Abstand zwischen ewG und Einlagerungsbereich
- Keine Nahfeldprozesse im ewG

Integritätsanalysen zum überlagernden ewG

Ergebnisse aus dem Vorhaben Resus: Temperaturentwicklung

Integritätsanalysen zum überlagernden ewG

Ergebnisse aus dem Vorhaben Resus:

Dilatanz- und Fluiddruckkriterium in überlagernden Steinsalzschichten

Integritätsanalyse zum multiplen ewG

Anforderungen und Randbedingungen

- Regionale hydraulische und thermische Gradienten
- Gebirgsspannungen
- Integritätsanalyse "nur" für die ewG
 - hier keine hydraulisch aktiven Klüfte
- ≈25m Barriere zwischen Abfällen und ewG-Begrenzung
- ewG sind von Klüften begrenzt
- Beeinflussung der THM-Evolution in ewG durch
 - Klüfte im Umfeld?
 - Andere ewG?
 - Nahfeldprozesse?

Modellierung

- Regional: THM-Verhalten des geklüfteten Kristallingesteins
- Nahfeldprozesse: Auffahrung, Verfüllmaterialien,...
- Bewährte Methode (THM-Kontinuums-Modell) könnte so beibehalten werden
- Zeitabhängige Randbedingungen
- Workflow zur Berücksichtigung von Klüften im Kontinuumsmodell notwendig
 - Zunächst Konzentration auf Hydraulik
 - Konzeptentwicklung notwendig
- Prinzipstudie zu Dominanz von Klüften

Prinzipstudie zur Strömung in klüftig-porösen Medien

a) Variation der Kluftpermeabilität

- Ab Faktor 1000 deutliche
 Beeinflussung des Druckfeldes
- Max. Erhöhung von v in der Matrix etwa 2 GO
- Im Endlagerbereich:
 - Geringe Verringerung von v
 - Änderung der Strömungsrichtung

Prinzipstudie zur Strömung in klüftig-porösen Medien

a) Variation der Kluftpermeabilität

- Ab Faktor 1000 deutliche
 Beeinflussung des Druckfeldes
- Max. Erhöhung von v in der Matrix etwa 2 GO
- Im Endlagerbereich:
 - Geringe Verringerung von v
 - Änderung der Strömungsrichtung

Prinzipstudie zur Strömung in klüftig-porösen Medien

b) Variation des Kluftnetzwerks

- Vernetzung hat einen großen Einfluss
- "Hydraulischer Käfig"-> Verringerung von v (1/10)
- "Clustergrenze"-> Erhöhung von v (3-fach)

Kluftnetzwerk und Klufteigenschaften müssen berücksichtigt werden!

Entwicklung Modellierungskonzept

Generisches geologisches Modell "mewG" Hydraulische Eigenschaften Modelleinheit Bandbreite/Wert k_f.Wert [m·s-1]

Wirtsgestein 1 10⁻¹³ bis 1 10⁻⁶ (geklüftet)

3 10⁻⁷ bis 3 10⁻⁵

1 10⁻¹⁵ bis 1 10⁻¹²

Deckgebirge

Wirtsgestein

(ungeklüftet)

- $K_f/k_m = 1e7 -> Klüfte dominant auf regionaler Ebene$
- Matrix kann nicht vernachlässigt werden (Integritätsanalyse im ungeklüfteten ewG)

diskretes Kluft-Modell

Hybrid-Modell

- Hybridmodell wegen Anzahl der Klüfte und deren Vernetzung weniger geeignet
- DFN und Kontinuumsmodell werden betrachtet
- Upscaling auf Kontinuumsebene notwendig

Matrixkontinuun

Kluftkontinuum

Kontinuum-Modell Mehrkontinua-Modell

kleinskalige

Klüfte

12

Modellierungskonzept

Modellierungskonzept: Modellaufbau

Modellaufbau

3D-Modell

• Prozesse: THM

• Permeabilitäten:

• $k_F = 5e-13 \text{ m}^2$

• $k_M = 1e-20 \text{ m}^2$

• $k_F/k_M = 5e7$

• Fluiddichte ρ: f(T, P)

• Fluidviskosität μ: f(T, C=1,1 kg m⁻³)

- Horizontaler hydraulischer Gradient 0,2%
- Geothermischer Gradient 30 K/km
- ewG-Bereiche mit homogen isotropen Eigenschaften

Modellierungskonzept: DFN – hydraulische Analysen

DFN – hydraulische Analysen

DFN – hydraulische Analysen

Modellierungskonzept: Upscaling / Mapping

Upscaling / Mapping: Übersicht

Generierung eines 3D-DFN-Modells (FracMan)

- Gesamtmodell
- Klüfte 2D
- Festlegung der H-Eigenschaften der Klüfte

Upscaling der Kluft Eigenschaften z.B.

- Permeabilität k [m²]
- Porosität n [-]
- Mesh Hexaeder

3D-Kontinuumsmodell (OGS)

- Mapping der hochskalierten Eigenschaften
- Klüfte als Zonen höherer Permeabilitäten

Upscaling / Mapping: Verifikation

DFN-Model

 Verifikationsproblem aus dem DECOVALEX Projekt (https://decovalex.org/)

Hochskalierte Klufteigenschaften

- Permeabilität k [m2]
- Porosität n [-]
- Würfelgitter

3D-FE Modell

- Unstrukturierte Gitter
- Nicht an Klüfte angepasst

Upscaling / Mapping: Verifikation

Modellierungskonzept: DFN – Upscaling

23

Upscaling der Klufteigenschaften

Ansatz nach Oda 1985

- Voller 3D-Permeabilitätstensor für jede Zelle
- Rein geometrisch, Keine Strömungsberechnung
- Klufttransmissivitäten gewichtet aggregiert
- Keine Berücksichtigung der Vernetzung
- Überschätzung der Permeabilität
- Implementierung Golder-FracMan®
 - Zusätzliche Konnektivitätsprüfung

Upscaling

Upscaling: Permeabilität

Modellbericht multipler ewG

1.2 Hydraulische Eigenschaften

Modelleinheit	Bandbreite/Wert	Kommentar
k _{f-} Wert [m⋅s ⁻¹]		
Deckgebirge	3 10 ⁻⁷ bis 3 10 ⁻⁵	
Wirtsgestein (ungeklüftet)	1 10 ⁻¹⁵ bis 1 10 ⁻¹²	entspricht im "multipler ewG" den Annahmen für die ewG Bereiche
Wirtsgestein (geklüftet)	1 10 ⁻¹³ bis 1 10 ⁻⁶	entspricht im "multipler ewG" dem Wirtsgestein außerhalb der ewG und im "mKBS-3" dem gesamten Wirtsgestein
Lamprophyrgang	1 10 ⁻⁷ bis 1 10 ⁻⁵	angelehnt an Deckgebirge angenommen
Effektive Porosität		
Deckgebirge	0,02	
Wirtsgestein	0,01	

Modellierungskonzept: Mapping - FEM

Mapping der hochskalierten Eigenschaften

- Übertragung der Eigenschaften vom Würfelgitter
- Unabhängige, unstrukturierte Gitter mit variierender Zellgröße
- Eigener Ansatz basierend auf Position der Zellmittelpunkte
- Eigenschaften des Mappings
 - Jede FE-Zelle wird mit Werten belegt
 - Alle Eingabewerte auf den Würfeln werden berücksichtigt
- Erweiterungen möglich z.B: unterschiedlicher Zellgrößen

Mapping der Permeabilitäten

Modellierungskonzept: Zusammenführung

Analyse der Permeabilitätsverteilung

Analyse der Permeabilitätsverteilung

ewGs im geklüfteten Kristallingestein

Stationäre Druckverteilung

ewGs im geklüfteten Kristallingestein

Stationäre Druckverteilung

Modellierungskonzept: THM-Analysen / Integrität

CHRISTA II

ca. 270 m

ca. 280 m

Referenz - ewG

Einsetzung der Wärmequelle

Time (yrs): ~0

Temperaturverlauf zeitlich/ewGs

Temperatur - Überlagerungseffekte

- Unterschiede in den maximalen verschmierten Temperaturen < 2°C
- Geringe gegenseitige Beeinflussung der Temperaturen in den ewGs

Time (yrs): ~38

In Bearbeitung: Integritätsbewertung

- Stand Integritätsbewertung:
 - Temperaturentwicklung
 - Druckentwicklung -> Fluiddruckkriterium
- Betrachtung der Mechanik
- Integritätsanalysen der ewGs
- Berücksichtigung von Nahfeldprozessen
- Eingebettetes Detailmodell

Zusammenfassung

- Ableitung quantitativer Integritätskriterien und Anpassung an EndlSiAnfV (BMU 2020) (gemeinsam mit BGETec)
- Bestehende Konzepte zur Integritätsanalyse anwendbar für überlagernden ewG
- Modellierungskonzept für das multiple ewG-Konzept
 - THM-Analyse: DFN und Kontinuumsmodell
 - Integritätsanalyse: Kontinuumsmodell
- Workflow: Geologie -> DFN -> Upscaling -> Mapping -> THM-Kontinuumsmodell
 - Automatisierte Übertragung von Kluft-Eigenschaften, z. B. K, n, E, ...
 - Entwicklung, Verifizierung, exemplarische Anwendung
- THM-Analyse:
 - Druck- und Temperaturverteilung im geklüfteten Medium
 - Überlagerungseffekte
 - Mechanik im Aufbau

Offene Punkte

- (Statistische) Analyse verschiedener Realisierungen der Kluftverteilung
- Ungewissheiten
- Materialmodellierung: Mechanik-Hydraulik-Wechselwirkung
- Weiterentwicklung und Spezialisierung auf Standorte
- Methodenverifizierung, Vergleich mit Alternativen